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ABSTRACT

This is one of a series of reports on the digital geometry
of three-dimensional images, such as those produced by computed
tomography. In this report we define simple surface points and
simple closed surfaces, and show that any connected collection
of simple surface points form a simple closed surface, thus
proving a three-dimensional analog of the two-dimensional
Jordan curve theorem. We also show that the converse is not
a theorem (in contrast to the two-dimensional case) and dis-
cuss more complex surface types.
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1. Introduction

This report is one of a series [1-3] on the digital

geometry of thtree-dimensional images. Three-dimensional images

are routinely produced in computed tomography (CT) where values

(CT numbers) are assigned to volume elements (voxels), which

are rectangular parallelepipeds filling a portion of three-

dimensional space. In this report we consider binary-valued

images, as might be obtained by applying a threshold to an

image produced by CT. This series of reports provides a theo-

retical basis for the three-dimensional analogs of various

processing algorithms, such as segmentation, thinning, connected

component labelling and counting.

In this report we define simple surface points and simple

closed surfaces, and show that any connected collection of simple

surface points forms a simple closed surface, thus proving a

three-dimensional analog of the two-dimensional Jordan curve

theorem. We also show that the converse is not a theorem (in

contrast to the two-dimensional case), and discuss more complex

surface types. The concepts introduced conform as closely as

possible to the corresponding concepts used in the topology and

geometry of continuous three-dimensional space.

The approach here is fundamentally different from that of

Artzy, Frieder, and Herman [4] and Herman and Webster [5]

in that we construe surfaces to be sets of vnxels, rather than
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of faces of voxels. The approach of representing the boundary

between an object and its surrounding by a set of faces separating

pairs of voxels may be used to describe the surface of any ob-

ject which is "connected" in some appropriate sense, but has

the disadvantage of not providing a natural framework for pro-

cesses such as thinning. Our approach,which treats surfaces as

"thin" objects, is complementary to theirs. Algorithms such as

thinning are simplified (a paper on the theory of 3-D thinning

is in preparation) but it is not true that such a surface can

be used to describe the border of any object. We will indicate

later how surfaces of faces may be encoded by surfaces of voxels.

There is a well developed theory of geometry and topology

for subsets of two-dimensional arrays [6 ]. Some early work on

3-D digital geometry was done by Gray [7 1 and Park [8 ]. A more

complete set of references is given in E1].

We begin with a short discussion of connectivity and com-

ponents in 3D; a more detailed discussion of these topics, as

well as distance, curves, surroundedness, borders, and genus,

are given in [1 ]. eeas0oS or
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2. Connectivity and components

A 3D digital image E is a three-dimensional lattice of

elements called voxels defined by triples of Cartesian coor-

dinates (x,y,z) which we may take to be integer valued. We

will consider two types of neighbors of a point p=(x,y,z):

(a) the neighbors (u,v,w) such that lx-ul+ly-vj+jz-wj=l

(b) the neighbors (u,v,w) such that max[lx-ul,ly-vl,lz-wl]=l

We refer to the neighbors of type (a) as 6-neighbors of p (the

face neignbors) and to the neighbors of type (b) as the 26-

neighbors of p (the face, edge, and corner neighbors). The

6-neighbors are said to be 6-adjacent to p, and the 26-neighbors

26-adjacent to p.

By a path n of length n>O from p to q in E, we mean a

sequence of points p=p0 ,...Pn =q of E such that pi is adjacent

to Pi-l' lsi~n. Any point alone is a path of length 0. We

thus speak of 6-paths and 26-paths depending on the type of

adjacency used.

Let S be a non-empty subset of E. To avoid special cases

we assume that S does not meet the border of Z. We say p and

q are connected in S if there exists a path from p to q con-

sisting entirely of points of S. Connectivity is an equivalence

relation, since a path of length 0 is a path, the reversal of

a path is a path, and the concatenation of two paths is a path.

The equivalence classes under this relation are called components

of S. Again, we have 6-connectivity, 26-connectivity, 6-components,

and 26-components.



* Similarly we can consider the components of the complement

S of S. Evidently, exactly one of these contains the border

of E; we call this component the background of S. All other

components of S, if any, are called cavities in S. If S has

no cavities, it is called simply connected. To avoid ambiguous

situations we shall assume that opposite types of connectivity

are used for S and for S.

Finally, we shall use a special type of path called a run

along a principal half-line. In the 6-connected case a north

half-line emanating from a point p=(x,y,z) is the set of points hp=

{(u,v,w)Iu=xw=z,vZy}, and similarly for east, west, south, up,

and down half-lines. In the 26-connected case the principal

half-lines include those along the various diagonals (such as

{(u,v,w) lu=x+i,v=y+i,w=z+i,i>O}). Thus, for 6-connectedness

there are six principal half-lines, and for 26-connectedness

there are 26. A run n along a principal half-line is the path

formed by points along the half-line emanating from p such that

no point occurs twice on the path. To simplify the discussion

below we will assume both in the 26-case and the 6-case that we

are talking about the north half-line emanating from a point.

Let p be a point of S. We let N27 (p) denote the 26 points

in the 3x3x3 neighborhood of p excluding p (these are the 26-

neighbors of p), and we let N125 (p) denote the 124 points in

the 5x5x5 neighborhood centered at p excluding p.



3. Surfaces

A point ptS is a simple surface point if the following con-

ditions are all satisfied:

(i) SM 2 7 (p) has exactly one component adjacent to p (in

the S sense); call this component together with p A

(ii) Sf N2 7 (p) has exactly two components adjacent to p (in

the S sense); call these components B and Cp.

p P
(iii) For every qES adjacent to p (in the S sense), q is

adjacent (in the S sense) to some point in B and to some point

in Cp

When confusion will not arise, we will call a simple surface

point a surface point.

Proposition 1. There are at most two components of SAN1 2 5 (p)

adjacent (in the S sense) to a surface point p.

Proof: There are exactly two components in SflN27 (p) adjacent

to p, and no points in N1 25 (p)-N 2 7 (p) are adjacent to p.F r

Thus there are either one or two components in S1N 1 2 5 (p)

adjacent to a surface point p. Now suppose that all q Ap are

also surface points (so that p is not near an "edge"). When

there are two components of SlN 1 2 5 (p) adjacent to p we say

that (the surface at) p is orientable and call A a disk. When

there is only one component in SIN12 5 (p) adjacent to p we say

(the surface at) p is non-orientable and call Ap a cross-cap.

When A pis a disk we call the two components of ShN1 25 (p) adjacent

to p B and C, where B and C fC. Clearly every qEA is
p p



Let p and q be adjacent surface points. Then we call the

component of SfN 27 (q) which contains the point of B adjacent

to q Bqp, and the component which contains the point of C adja-
p

cent to q Cqp, although B and C are not necessarily distinct
qp qp qp

components. However, whenever A is a disk it is easily seen that
p

B =B B' and C =CqC, where Bq and C (in some order) are
q qp p q qp whr q q

the two components of SfN 2 7 (q) adjacent to q. [Proof: Since

B' and C' are distinct, so are B and C for any q.]
p p qp qp

Proposition 2. Let n=pl,... ,pn be any path of (not necessarily

orientable) surface points. There exist connected subsets (in

the S sense) B and Cn of Sfn[ U N2 7 (p)] such that every pointPC T

of 7 is adjacent to some point of B and to some point of C

(in the S sense).

Proof: Let B1=Bpl and C =Cpl; clearly B1 and C1 are each con-

nected subsets of SfN 2 7 (pI), and p1 is adjacent to some point

in B1 and to some point in C Now for each i>l let Bi=BiI U

B and C. =C iUC . If B. is a connected subset of

Sn[ U N2 7 (p.)], then B. is a connected subset of
lSj9i-. i 1

gn[ U N2 7 (Pj)] by definition of B , and similarly for Ci .19-i Pi-i-

Also, if every pj, 1.j;i-l is adjacent to Bi_1 and to C._ ,

then every pj, lji is adjacent to Bi and Ci, since BpiPi-l

and C are each adjacent to pi. Then B =Bn and C-C are
pipi-l n n

the desired subsets.EJ



Proposition 3. Let =Pl'""" 'Pn be any path of orientable

surface points. There exist connected subsets B' and C' of

Sfr[ U N1 2 5 (p)] such that every qE[ U A P I is adjacent to some
p~'T P 67T

point in B' and to some point in C' (in the S sense).
iT 7T

Proof: The proof parallels that of the previous proposition.
Let , B'=B' and C'=C' clay1 1

Let AI=A p 1 Pl 1 clearly B' and C' are each

connected subsets of SN 1 2 5 (Pl, and every qEA1 is adjacent to

B' and to C'. For every i>1 let Ai=A. UApi B!=B' UB' , and
K1 1- i 1-l Pi 1-l

C'=C ' UC' . Since B QB' rB_ and B a B' , B! isi l-±Pi 'PiPi-i Pi-i PiPi-I i

a connected subset of Sn[I U N1  (pj)] if B! is a connected
Si-

subset of S5[i U N (pj)], and similarly for C!. Also, if

1~jsi-1
every qA_ is adjacent to B!_ and Cil then every qEAi1-i

is adjacent to B! and C! since Ai-A FAp. Thus B'-B' and
1 1 1 i-1 i p n

C' -C' are the desired subsets.C

Proposition 4. Let 7=pl,...,Pn be a run of orientable surface

points along a (say) north half-line. Then B' and C' are dis-

tinct components in S(I[ U N12 5 (p)].
p ETT

Proof: We follow the construction of B' and CI in the above

proof. Clearly B1 and C1 are distinct components in SfN 12 5 (p1 ).

Now we note that B'=Bj 1 U[B' -B!_ ] and C!=[C! _C' ]UC'.

Since [B' -B! IQB' the points in [B!-B! ]=[B' -B! _] are
Pi -i Pii-l Pi

nowhere adjacent to points of C'. Because the pi are along
Pi

a half-line the points in [B' -B!] are nowhere adjacent to the

points in [C! _-C' ]. Hence, points in [B.-Bi_ I] are nowhere

adjacent to points in C!.

1-

I.:



In the same fashion, starting with B=[Bi 1 -Bk ]UB'

and C =C!- UC- Ci-] we can show that points in [Ci -C!_]

are nowhere adjacent to points in B!. Thus, if B!_ and C!1. i- -i

are nowhere adjacent to each other (induction hypothesis) then

neither are B! and C!. By Proposition 3 B' and C ' are each
1 1 Tr 1T

connected subsets of Sf'[ U N1 25 (p)], so they form distinct

components.L

Proposition 5. Let 7=pl,.,n be a run of orientable surface

points along a (say) north half-line. Then B and C are

distinct components in 4l[ U N2(P)].
pE2

Proof: Note that by the construction of B , Cf, B,, and C,
we have B QB; and C 5C;, so that the connected subsets B and

C1 are nowhere adjacent to each other.0

Remark. In Propositions 4 and 5 we could let n be any path

such that the points being added at the ith step in the con-

structions are nowhere adjacent to those already considered

except inside N(pi). In particular, when 6-connectedness is

used for S we can use any of the six principal half-lines, and

when 26-connectedness is used for S we can use any of the 26

principal half-lines. Also, paths that turn are not strictly

disallowed in the 26-connected case.

Let w=pl,...,p n be a run of (not necessarily orientable)

surface points along a principal (say north) half-line h
p

emanating from pES such that p0 and Pn+l (the points preceding

and following ff along the half-line) are both in S. Clearly

p0 and Pn+l are in BT UC . If p0 is connected to Pn+l in B UC



then we say that hp touches S in ii. If p0 is not connected to

n+l in B 7UC we say that h crosses S in n. Clearly, if ii

consists solely of orientable surface points and hp touches S

in n, then p0 and Pn+l are either both in B or both in C . We

call p0 the head and pn+l the tail of ff. If hp crosses S an odd

number of times in runs ffl,..., m we say that p is inside S.

When hp crosses S an even number of times in runs fi
' '. ' ' 1T we

say that p is outside S.

Let p and q be adjacent points not in S, and let A* (=A*
p,q q,p

be a component (in the S sense) of Sf[hp Uh q, where hp and hq

are north half-lines emanating from p and q, and no other

points on h are connected to A* in SA[h Uhq]. Clearly A*
p pq p q p,q

is a union of runs i along hp and p. along hq.

Proposition 6. If A* consists solely of orientable surface
p,q

points, then B=[UB IU[UB I is a connected set, and
iii j pi

C=[UC ]U[UC ] is a connected set.
i i j Pj

Proof: Where fi meets pi, say at S 7itP j , s adjacent to t,

we have distinct components B6 and C6 along the run 6=s,t

by Proposition 5 and the ensuing remark, such that Bs't B6 ,

B t'sB6, and C S C6 , Ct 's 9CC, so that B UBp and C UCp are

each connected sets. The proposition follows from induction

on the number of places where a i. meets a pj.L

Proposition 7. If h crosses S an even number of times in

A*q, where A* consists solely of orientable surface points,

then the head of the first w. is connected (in the S sense) to
the tail of the last ffi in [U[ U N2 7 (p)]]U[U[ U N27(q)]].

ipE.r j qEpj



Proof: Let ni and nj be runs along hp that are consecutive

crossings, and (w.Z.g let the head of . be in B . Since h

crosses S in ni, B . and C . are distinct components in
1 1

[pU N2 7 (p)] and the tail of w i is in C i" By Proposition 6 we

1 ~ it
know1 that C . and C1. are connected and B . and B . are connectee

If any runs ffk occur between i and i., hp must touch S in fk

since 7i and 11. are consecutive crossings, so that the head

and tail of iTk are connected in [B kUC k]. Thus it is clear

that the tail of w. is connected to t ,e head of ff. (between1 3

runs tails are connected to heads in Snh p). Then the head of

f. is inC , and so its tail is in B

To finish the proof requires an induction on the number

of pairs of consecutive crossings. If hp never crosses S in

A* , then the head of the first ff. is connected to the tailp~q 1

of the last fif After every two consecutive crossings we see

that if the head of the first crossing i1 is in B , then the

tail of the last crossing fn is in B . By Proposition 6 thesen

two points are connected in [U[ U N2 7 (p)]]U[U[ U N2(q)]].Ci PE~ri 27j q Pji2

To establish that the head of the first ni is not connected

to the tail of the last one in [U[ U N2 7 (p)]]U[U[ U N 27(q)]]
i pEn i j qkpj

when h crosses S an odd number of times in A* we will need
p pq

orientability to show that [UB IU[UB ] and [UC .][UC ] are
ii i Pj 1. j Pj

distinct components, since at a cross-cap these would become

connected.



Proposition 8. If every point of A* is orientable, and if
P,q

h crosses S an odd number of times in A*,q, then the head of

the first i is not connected to the tail of the last one in
1

[U[ U N2 7(p)]]U[U[ U N27(q)]].
i pE. j qEpj

Proof: Clearly the head(call it x) of the first w i and the tail

of the last one (call it y) occur in [U(B, UC i)]U[U(Bp]UCP3)]•

Since [UB IU[UBP] and [UC ]U[UCp] are each connected sets,

they must be distinct components in [U[ U N2 7 (p))]U[U[ U N2 7 (q)]]i PEWi qPj

if x and y are not connected. Let us suppose then that

these are not distinct components. By Proposition 5 these two

r sets are not connected in the neighborhood of any single run

iii or p. Thus, they must be connected where some wi meets some

pj That is, at some pr Eiri we have B connected to B and C

connected to Cpj, but at some other psOri we have B IT connected

to C and C . connected to B pj But this violates Proposition 4

along the run from pr to ps in hp, a contradiction.

Having established that [UB IU[UB ] and [UC 7fU[UC ] are
i i j i1 j Pj

distinct components, the proposition follows from an induction

on the number of crossings. If x is in B ., where w . is the1 1

first run in A*,q (hp, and if w is the first crossing, then the

tail of nk is in C1k by the argument used in the proof of Propo-

sition 7. In the portion of A* beyond wk there remain an even
P,q

number of crossings, so by Proposition 7, y is in C, where £

is the last run in A*qhp. Thus, xE[UB i]U[UB ] is not con-

nected to yE(UC iU[UC ].c

ii j j
_|te 

I

-



We now define a (simple) closed surface as a connected set

S consisting entirely of orientable surface points. Let S be

a simple closqd surface.

Proposition 9. Any two adjacent p,q(S are either both inside

or both outside S.

* Proof: Notice that for any component of Sn[h pUhq I we can write

A* =A* . For each such component the heads of the first wipq q,p

and p are connected in [U[ U N2 7 (p)]]U[U[ U N2 7 (q)]], as
i PEi J q(Pj

are the tails of the last ni and pj. Now suppose hp crosses S

an even number of times in A* so that the head of the firstp~q

n . is connected to the tail of the last ni" Then by Proposition1

8 it cannot be that h crosses S an odd number of times in A*
p qop

Suppose next that h crosses S an odd number of times in A*,q
p pq

so that the head of the first wi is not connected to the tail

of the last 7i" Then by Proposition 7 it cannot be the case that

h crosses S an even number of times in A* . Thus h and h
q q,P p q

both cross S in A* either an odd number of times or an even
p,q

number of times. Since this is true for every A* ,qSIl[h pUh q]

it follows that p and q are either both inside or both outside.C

Proposition 10. Points connected in S are either both inside

or both outside S.

Proof: Suppose there is a path pl,...,pn from p to q in S where

p is inside and q is outside. Then there exist two consecutive

points pi,Pi+l on the path such that pi is inside and pi+l is

outside, a contradiction to Proposition 9. 0



Proposition 11. The inside and outside of S are both non-empty.

Proof: The border of E consists of outside points. Let P be

the northmost plane that meets S, and Pn and Ps the planes

immediately to the north and south of P, and let pEPAS. Since

N27 (P)fOPn is all in S, it must be that (say) Bp lies entirely
in Ps, while Cp contains PnnN27(p). Let qEBp; it must have a

point tES as its north neighbor (it could be that t=p), since

otherwise q would be connected to P nNN7(P)QC . Then hn 27 P q

crosses S in n=t, so that q is inside.D

Proposition 12. S-{p} has no cavities, where p is any point

of the closed surface S.

Proof: Let q and r be in distinct components of SU{p}, so that

every path from q to r contains at least one point in S-{p}.

Let 6=tl,...,tk be such a path, and let ti,t. be the first and

last points of 6 in S-{p}. Notice that since there is exactly

one component adjacent to p in SMN27 (p), deleting p cannot leave

S-{pl disconnected. Thus there are paths f=pl,...,pn from t1

to p and p=ql,...,qm from t. to p lying entirely in S, where

Ph and qm are each the first occurrence of p on n and p. Along

the composite path in S (")=Pl,...,(Pn=qm),...,q, (i.e., with p
reversed) there exist connected subsets B and C of S.

Further, p is adjacent to each of these, so that B (p)UC (p)U{p}

is a connected subset of SU{p}. Clearly ti-l B(.up)UC( p)U{p }

and tj+l EB p)UC (p)U{pl, so that there exists a path from q to

r in §U{p}, a contradiction. L



Proposition 13. A simple closed surface has at most one cavity.

Proof: Deleting p from a closed surface S leaves S-ipl with no

cavities. Since every point in S has exactly two components

adjacent to it in SON 27 (p), deleting p merges at most two

components. If at most two were merged, and only one remains,

there were at most two to start with.L

Proposition 14. A simple closed surface has exactly one cavity.

Proof: By Propositions 10 and 11 it has at least one, and by

Proposition 13 it has at most one. L

Proposition 14 is the 3D analog of the Jordan curve

theorem for connected sets of simple surface points. The defi-

nition given for a simple surface point is modeled after the

standard definition in continuous space, namely that a surface

point is one whose neighbhorhood is homeomorphic with the inside

of a circle on the plane. Thus, every point in a small enough

neighborhood of a point must be adjacent to either side of the

surface.

Similarly, the concepts of orientability and cross-caps

are modeled after the corresponding concepts used in the topo-

logy of continuous space. A cross-cap is homeomorphic with a

Mobius strip, and may be visualized by deforming the edge of

the strip to a circle in a plane. Thus, while each point on the

face of the strip appears as a surface point, there is only one

side (face) in the collection of points. We use the requirement

on the 125-neighbhorhood of a surface point to guarantee that

such phenomena do not occur (at least locally).



This raises the question of the realizability of cross-caps

in the 3D lattice. That is, are the definitions of connectedness,

together with the definition of simple surface point, strong

enough to imply that cross-caps do not exist? From a theoretical

standpoint an affirmative answer to this question would simplify

the definition of simple closed surface, and from a practical

viewpoint it would lessen the computational cost of detecting

simple closed surfaces. While various properties such as

symmetries may be used to reduce the effort needed to answer

this question, the answer ultimately rests on a case analysis

of the 2124 different configurations in the 125-neighborhood

of a point pES.

The above definition of simple closed surface may be

termed a local one, in that except for the connectivity re-

quirement the conditions on the points are local. In two

dimensions the converse of the Jordan curve theorem shows that

curves are actually characterized by the global specification

of the theorem; namely, if S is connected, S has exactly two

components, and every point of S is adjacent to both these

components, then S is a curve. The following proposition shows

that in 3D no such characterization of simple closed surfaces

is possible.

Proposition 15. Let S be connected, S have exactly two compo-

nents, and every point of S be adjacent to each component of S;

then S is not necessarily a simple closed surface.



Proof: Consider the following sets S:

26-connectivity

1st plane 2nd plane 3rd plane 4th plane 5th plane

00000 01110 01010 01110 00000
0 1 110 10001 10 10 1 10001 01110
00000 01110 01010 01110 00000

The central point in the third plane (underlined) is not a

simple surface point, since it is adjacent to three components

in its 27-neighborhood.

6-connectivity

1st plane 2nd plane 3rd plane 4th plane 5th plane
111 111 111 111 111
1111 1011 1011 101 1011

11111 11011 11111 1i1ii 11111
1111 1101 1101 101 1101

1 111 1 11 1 11 1 11

6th plane 7th plane

111 111
1011 1111

11011 11111
1101 1111
111 111

The central point in the fourth plane is locally adjacent to

four components in S. (The central points in the third and

fifth planes are adjacent to outside points in the fourth plane.)C



We see then that the converse of Proposition 14 fails

because surfaces (not simple closed surfaces) may touch

themselves without globally affecting connectivity. Thus, in

addition to simple surface points for which SnN 2 7 (p) has two

components adjacent to p, we see that there are non-simple

surface points for which SfAN 2 7 (p) has three or more components

adjacent to p. One might wonder then if an analog of Proposi-

tion 14 might be given for connected sets of simple and non-simple

surface points. The following example shows that this is not

possible.

26-connectivity

0 0 0 0 0 0 0 0 1 1 1 1 10 010 0 10 0 10 10 1 0

0 11 1110 10 0 0 0 01 1011101 1010101

0 0 0 0 0 0 0 0 11111 0 010 0 10 0 10 10 10

010 0 0 10 0.111110 0000000

1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 1 1 1 11 0

0 10 0 0 10 0 1111 10 0 0 0 0 0 0 0

6-connectivity

1 11 1 11 1 11

1111 1011 1011

1 111 1 10 11 1 11 11

1 1 11 1 110 1 1 11011

1111 1 1 11 111 11

S1 1 1 110 1 1 101
111 111 111



101 101 101

11111 11 11 1 1
1 ii 1 1 0i l 1 1 0i 1111 101 111

i1 1 1 1 1 1

101 101 101

10 ii 10 ii 1Iii 1111

i111 110i 1111

l1l0 i1011 1 i

In each case S has three components: the outside and a ring

of 0's surrounding a central component of 0's (underlined).

proposition 16. No closed surface is both a 6-surface and

a 26-surface.

Proof: Let S be a closed 6-surface. Clearly there exist points

p,qkS with p in the northmost plane P of S and q a 6-neighbor of

p in the plane Ps just south of P (since all points of S are

connected by 6-paths). We denote the two components in

6 6Sr 27 6(p) by B and C when 6-adjacency is used for.S (so thatSf27P b p Cp

B6 and C6 are 26-components). Let C6 be the component containing
p p p
P ( where P is the plane just north of P. Then B6
ln 27(t) y i n p
lies entirely in P n27(p). If p is also a simple 26-surface



point (so that B 26 and C26 exist), B 26 must be 6-adjacent to p;
p p p

but B26 too must lie entirely in Ps, and thus cannot be 6-p
adjacent to p, since q is p's south neighbor. C



4. Concluding remarks

We have proposed definitions for simple surface points

and simple closed surfaces in discrete three-dimensional space,

and have shown that any connected collection of simple surface

points forms a simple closed surface. We can now make several

immediate generalizations of these ideas.

The definition of simple surface point refers explicitly

to the types of connectivity and adjacency of S and its comple-

ment S. While we have assumed that 6- and 26-adjacency are

used, and opposite types for S and S, this is not strictly

necessary. All of the results of Section 3 rest solely on adja-

cencies which are guaranteed to exist by hypothesis, e.g., p

is a surface point. Thus, we are free to use any kind of adja-

cencies for S and S (including the choice of using one type of

adjacency for both) although it may no longer be the case that

surface points exist.

By the remarks of the previous paragraph, then, we are free

also to define adjacency between points which are not even "near"

each other. Such alternate adjacencies may be useful in, for

example, noisy images, where noisy data creates gaps between

otherwise "connected" objects.

Secondly, we are free to define adjacency on data of any

dimensionality. We may thus speak of a simple n-dimensional

closed hyper-surface as a connected set of simple n-dimensional

hypersurface points each of which is orientable in n dimensions.



We noted earlier that simple closed surfaces as presented

here cannot be used to describe the borders of arbitrary ob-

jects, as can be done with the approach based on faces of

voxels. However, by effectively tripling the resolution of the

image we can encode the voxel pairs which constitute faces as

single points in the high resolution image, so that the simple

closed surfaces defined here are equivalent to those defined

in terms of faces. For example, below we show (by x's) the

voxels (pixels in this example) of the 6-surfaces (4-curves

in this example) of the high resolution images when 6- and 26-

connectivity are used for the low resolution object whose

faces (edges in this example) are shown by lines.

XXxx x x x x X x x
x x x xx
X x xx -x x x x x x
x x xxx x x xx
x x x x x x x x X
x X x x XX x x
x xxxxx x X X X x
x x x x
X XxX X XxX X Xx X X X X X x xX

Similarly each object may be encoded as a 26-surface.

,iI .
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